The research of open-domain dialog systems has been greatly prospered by neural models trained on large-scale corpora, however, such corpora often introduce various safety problems (e.g., offensive languages, biases, and toxic behaviors) that significantly hinder the deployment of dialog systems in practice. Among all these unsafe issues, addressing social bias is more complex as its negative impact on marginalized populations is usually expressed implicitly, thus requiring normative reasoning and rigorous analysis. In this paper, we focus our investigation on social bias detection of dialog safety problems. We first propose a novel Dial-Bias Frame for analyzing the social bias in conversations pragmatically, which considers more comprehensive bias-related analyses rather than simple dichotomy annotations. Based on the proposed framework, we further introduce CDail-Bias Dataset that, to our knowledge, is the first well-annotated Chinese social bias dialog dataset. In addition, we establish several dialog bias detection benchmarks at different label granularities and input types (utterance-level and context-level). We show that the proposed in-depth analyses together with these benchmarks in our Dial-Bias Frame are necessary and essential to bias detection tasks and can benefit building safe dialog systems in practice.


翻译:对开放式对话系统的研究由于在大型公司方面受过培训的神经模型而大大繁荣了对开放式对话系统的研究,然而,这种公司常常带来各种安全问题(例如攻击性语言、偏见和有毒行为),严重妨碍对话系统的实际部署。在所有这些不安全问题中,解决社会偏见问题更为复杂,因为社会偏见对边缘化人口的负面影响通常以隐含的方式表示,因此需要进行规范推理和严格分析。在本文件中,我们集中调查对对话安全问题的社会偏见的发现。我们首先提出一个新的Dial-Bias框架,以务实地分析对话中的社会偏见,考虑更全面的偏见分析,而不是简单的二分法说明。根据拟议的框架,我们进一步采用CDail-Bas数据集,据我们所知,这是第一个附有注释的中国社会偏见对话数据集。此外,我们还在不同标签颗粒和投入类型(不相上和上下层)建立了几个对话偏差检测基准。我们表明,拟议在我们的Di-Bas框架中与这些基准一起进行深入分析,对于发现偏见的任务和建设安全对话系统是必要和必不可少的。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
11+阅读 · 2022年9月1日
VIP会员
相关VIP内容
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员