Smartphones, autonomous vehicles, and the Internet-of-things (IoT) devices are considered the primary data source for a distributed network. Due to a revolutionary breakthrough in internet availability and continuous improvement of the IoT devices capabilities, it is desirable to store data locally and perform computation at the edge, as opposed to share all local information with a centralized computation agent. A recently proposed Machine Learning (ML) algorithm called Federated Learning (FL) paves the path towards preserving data privacy, performing distributed learning, and reducing communication overhead in large-scale machine learning (ML) problems. This paper proposes an FL model by monitoring client activities and leveraging available local computing resources, particularly for resource-constrained IoT devices (e.g., mobile robots), to accelerate the learning process. We assign a trust score to each FL client, which is updated based on the client's activities. We consider a distributed mobile robot as an FL client with resource limitations either in memory, bandwidth, processor, or battery life. We consider such mobile robots as FL clients to understand their resource-constrained behavior in a real-world setting. We consider an FL client to be untrustworthy if the client infuses incorrect models or repeatedly gives slow responses during the FL process. After disregarding the ineffective and unreliable client, we perform local training on the selected FL clients. To further reduce the straggler issue, we enable an asynchronous FL mechanism by performing aggregation on the FL server without waiting for a long period to receive a particular client's response.


翻译:智能手机、 自主车辆和互联网设备被视为分布式网络的主要数据源。 由于互联网在互联网可用性方面的革命性突破以及IoT设备能力的不断改进, 最好在当地存储数据并在边缘进行计算, 而不是与中央计算代理共享所有本地信息。 最近提出的名为 Freed Learning (Freed Learning (Fal) 的机器学习(ML) 算法为维护数据隐私、 开展分布式学习、 减少大规模机器学习(ML) 问题中的通信管理费用铺平了道路。 本文建议通过监测客户活动和利用现有的本地计算机资源, 特别是资源受限制的 IoT 设备( 例如移动机器人), 来加速学习进程。 我们给每个 FL 客户指定一个信任分数, 并且根据客户的活动更新。 我们认为, 分散式移动机器人是一个在记忆、 带宽度、 处理器或电池生活中有资源限制的FL 客户端点。 我们认为, 作为FL客户在现实世界中了解其资源受限制行为影响的行为模式, 我们的客户在FL 进行不可靠的长期的客户在FL 中进行不可靠的学习。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | ICAPS 2019等国际会议信息3条
Call4Papers
3+阅读 · 2018年9月28日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月8日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关VIP内容
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | ICAPS 2019等国际会议信息3条
Call4Papers
3+阅读 · 2018年9月28日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员