Background: Data errors are a common challenge in machine learning (ML) projects and generally cause significant performance degradation in ML-enabled software systems. To ensure early detection of erroneous data and avoid training ML models using bad data, research and industrial practice suggest incorporating a data validation process and tool in ML system development process. Aim: The study investigates the adoption of a data validation process and tool in industrial ML projects. The data validation process demands significant engineering resources for tool development and maintenance. Thus, it is important to identify the best practices for their adoption especially by development teams that are in the early phases of deploying ML-enabled software systems. Method: Action research was conducted at a large-software intensive organization in telecommunications, specifically within the analytics R\&D organization for an ML use case of classifying faults from returned hardware telecommunication devices. Results: Based on the evaluation results and learning from our action research, we identified three best practices, three benefits, and two barriers to adopting the data validation process and tool in ML projects. We also propose a data validation framework (DVF) for systematizing the adoption of a data validation process. Conclusions: The results show that adopting a data validation process and tool in ML projects is an effective approach of testing ML-enabled software systems. It requires having an overview of the level of data (feature, dataset, cross-dataset, data stream) at which certain data quality tests can be applied.
翻译:数据错误是机器学习(ML)项目的一个共同挑战,通常在ML辅助软件系统中造成显著的性能退化。为了确保早期发现错误数据,避免使用不良数据、研究和工业实践的培训ML模型,在ML系统开发过程中采用数据验证程序和工具。目标:研究调查工业ML项目采用数据验证程序和工具的情况。数据验证进程要求为工具开发和维护提供大量工程资源。因此,必须确定最佳做法,特别是为处于部署ML辅助软件系统早期阶段的发展团队采用这些做法。 方法:行动研究是在电信中大型软件密集组织进行的,特别是在分析师R ⁇ D组织内进行,用于对返回的硬件电信装置的缺陷进行分类。结果:根据评价结果和从我们的行动研究中学习,我们查明了三种最佳做法、三个好处和两个障碍:在ML项目中采用数据验证程序和工具。我们还提议一个数据验证框架(DVF),用于系统化应用数据流程的系统,在数据验证过程中采用数据更新M系统。结果显示,数据验证系统采用有效的数据验证程序。