Social metaverse is a shared digital space combining a series of interconnected virtual worlds for users to play, shop, work, and socialize. In parallel with the advances of artificial intelligence (AI) and growing awareness of data privacy concerns, federated learning (FL) is promoted as a paradigm shift towards privacy-preserving AI-empowered social metaverse. However, challenges including privacy-utility tradeoff, learning reliability, and AI model thefts hinder the deployment of FL in real metaverse applications. In this paper, we exploit the pervasive social ties among users/avatars to advance a social-aware hierarchical FL framework, i.e., SocialFL for a better privacy-utility tradeoff in the social metaverse. Then, an aggregator-free robust FL mechanism based on blockchain is devised with a new block structure and an improved consensus protocol featured with on/off-chain collaboration. Furthermore, based on smart contracts and digital watermarks, an automatic federated AI (FedAI) model ownership provenance mechanism is designed to prevent AI model thefts and collusive avatars in social metaverse. Experimental findings validate the feasibility and effectiveness of proposed framework. Finally, we envision promising future research directions in this emerging area.
翻译:社会元是一个共享的数字空间,将一系列用户可以玩玩、购物、工作和社交的相互关联的虚拟世界结合起来。在人造智能的进步和对数据隐私关切的认识不断提高的同时,还提倡联谊学习,作为向保护隐私的全新社会元体的范式转变,但包括隐私权-公用事业交换、学习可靠性和AI模式盗窃等挑战阻碍了在真实的全新应用中部署FL。在本文件中,我们利用用户/affatars之间普遍存在的社会联系,推进一个社会觉醒的FL级框架,即社会FL,以便在社会全新变化中更好地进行隐私-公用事业交易。随后,以块链为基础的无隔离强FL机制,由新的块状结构设计,由连接/离链协作形成的经改进的共识协议。此外,基于智能合同和数字水标记,一个自动更新的AI(FedAI)模型所有权验证机制,旨在预防AI模型盗窃和在社会新时代的前瞻性框架中进行协作。我们提出的未来前景展望性研究,最后验证了这一前景展望性框架。