In this paper, we refine the (almost) \emph{existentially optimal} distributed Laplacian solver recently developed by Forster, Goranci, Liu, Peng, Sun, and Ye (FOCS `21) into an (almost) \emph{universally optimal} distributed Laplacian solver. Specifically, when the topology is known, we show that any Laplacian system on an $n$-node graph with \emph{shortcut quality} $\text{SQ}(G)$ can be solved within $n^{o(1)} \text{SQ}(G) \log(1/\varepsilon)$ rounds, where $\varepsilon$ is the required accuracy. This almost matches our lower bound which guarantees that any correct algorithm on $G$ requires $\widetilde{\Omega}(\text{SQ}(G))$ rounds, even for a crude solution with $\varepsilon \le 1/2$. Even in the unknown-topology case (i.e., standard CONGEST), the same bounds also hold in most networks of interest. Furthermore, conditional on conjectured improvements in state-of-the-art constructions of low-congestion shortcuts, the CONGEST results will match the known-topology ones. Moreover, following a recent line of work in distributed algorithms, we consider a hybrid communication model which enhances CONGEST with limited global power in the form of the node-capacitated clique (NCC) model. In this model, we show the existence of a Laplacian solver with round complexity $n^{o(1)} \log(1/\varepsilon)$. The unifying thread of these results, and our main technical contribution, is the study of novel \emph{congested} generalization of the standard \emph{part-wise aggregation} problem. We develop near-optimal algorithms for this primitive in the Supported-CONGEST model, almost-optimal algorithms in (standard) CONGEST, as well as a very simple algorithm for bounded-treewidth graphs with slightly worse bounds. This primitive can be readily used to accelerate the FOCS`21 Laplacian solver. We believe this primitive will find further independent applications.


翻译:在本文中, 我们将最近由 Forster、 Goranci、 Liu、 Peng、 Sun 和 Ye (FOCS 21 ) 开发的“ 21 美元 ” (接近)\ emph{ 普遍最佳 ) 分布式拉普拉西亚解决方案。 具体地说, 当已知地形时, 我们展示了任何以美元计价的系统, 以美元计价, 以美元计价; 美元计价; 美元计价 ; 美元计价 ; 美元计价 (G) 平价 ; 以美元计价 平价 平价 ; 以美元计价 平价 平价 ; 以美元计价, 以美元计价 ; 以美元计价 平价 ; 以美元计价 平价 平价 平价 平价 平价 平价 ; 以未知的平价 平价 平价, 以C 平价 平价 平价 的方式, 以 平价 平局 平局 平局 。

0
下载
关闭预览

相关内容

IEEE计算机科学基础研讨会(FOCS)是由IEEE计算机学会计算数学基础技术委员会(TCMF)主办的旗舰会议,涵盖了广泛的理论计算机科学。它每年秋季举行,并与每年春季举行的由ACM SIGACT赞助的姊妹会议——计算理论年度研讨会(STOC)配对。官网链接:http://ieee-focs.org/
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年7月5日
Arxiv
0+阅读 · 2022年7月4日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员