The extremum graph is a succinct representation of the Morse decomposition of a scalar field. It has increasingly become a useful data structure that supports topological feature directed visualization of 2D / 3D scalar fields, and enables dimensionality reduction together with exploratory analysis of high dimensional scalar fields. Current methods that employ the extremum graph compute it either using a simple sequential algorithm for computing the Morse decomposition or by computing the more detailed Morse-Smale complex. Both approaches are typically limited to two and three dimensional scalar fields. We describe a GPU-CPU hybrid parallel algorithm for computing the extremum graph of scalar fields in all dimensions. The proposed shared memory algorithm utilizes both fine grained parallelism and task parallelism to achieve efficiency. An open source software library, TACHYON, that implements the algorithm exhibits superior performance and good scaling behavior.


翻译:extremum 图形是标标场Morse分解的简明表示。 它日益成为一个有用的数据结构, 支持对 2D / 3D 弧场进行直观直观化的地貌特征, 并能够减少维度, 同时对高维弧场进行探索性分析。 使用 extremum 图形的当前方法, 或者使用简单的序列算法来计算 Morse 分解或计算更详细的 Morse- Smale 复合体来进行计算。 这两种方法通常都限于两个和三个维的标点。 我们描述用于计算 标点字段所有维度的外形图的 GPU- CPU 混合平行算法。 拟议的共享记忆算法利用精细的颗粒平行法和任务平行法来提高效率。 使用开放源软件库TACHYON 来实施算法的高级性能和良好缩放行为。</s>

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月25日
Arxiv
0+阅读 · 2023年4月24日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员