Convolutional Networks have dominated the field of computer vision for the last ten years, exhibiting extremely powerful feature extraction capabilities and outstanding classification performance. The main strategy to prolong this trend relies on further upscaling networks in size. However, costs increase rapidly while performance improvements may be marginal. We hypothesise that adding heterogeneous sources of information may be more cost-effective to a CNN than building a bigger network. In this paper, an ensemble method is proposed for accurate image classification, fusing automatically detected features through Convolutional Neural Network architectures with a set of manually defined statistical indicators. Through a combination of the predictions of a CNN and a secondary classifier trained on statistical features, better classification performance can be cheaply achieved. We test multiple learning algorithms and CNN architectures on a diverse number of datasets to validate our proposal, making public all our code and data via GitHub. According to our results, the inclusion of additional indicators and an ensemble classification approach helps to increase the performance in 8 of 9 datasets, with a remarkable increase of more than 10% precision in two of them.


翻译:过去十年来,连锁网络在计算机视野领域占据了主导地位,展示了极强的地物提取能力和杰出的分类性能。延长这一趋势的主要战略依赖于进一步扩大网络的规模。然而,成本在提高绩效的同时会迅速上升。我们假设增加多种信息来源对有线电视新闻网可能比建立一个更大的网络更具成本效益。在本文中,提出了一种组合方法,用于准确图像分类,通过有人工定义的统计指标集,通过Convolution Neural网络结构自动生成检测到的特征。通过将CNN和受过统计特征培训的二级分类师的预测结合起来,可以廉价地实现更好的分类性能。我们测试了多种学习算法和CNN结构来验证我们的提案,通过GitHub公布我们的所有代码和数据。根据我们的结果,增加的指标和混合分类方法有助于增加8个数据集的性能,其中两个数据集的精确度明显提高10%以上。

0
下载
关闭预览

相关内容

【快讯】KDD2020论文出炉,216篇上榜, 你的paper中了吗?
专知会员服务
51+阅读 · 2020年5月16日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
6+阅读 · 2018年2月6日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员