Efficient modeling of the inter-individual variations of head-related transfer functions (HRTFs) is a key matterto the individualization of binaural synthesis. In previous work, we augmented a dataset of 119 pairs of earshapes and pinna-related transfer functions (PRTFs), thus creating a wide dataset of 1005 ear shapes and PRTFsgenerated by random ear drawings (WiDESPREaD) and acoustical simulations. In this article, we investigate thedimensionality reduction capacity of two principal component analysis (PCA) models of magnitude PRTFs, trainedon WiDESPREaD and on the original dataset, respectively. We find that the model trained on the WiDESPREaDdataset performs best, regardless of the number of retained principal components.
翻译:对与头有关的转移功能(HRTF)的个体间变化进行高效建模是二进制合成个体化的关键,在以往的工作中,我们扩大了由119对耳形和针形相关转移功能组成的数据集(PRTFs),从而建立了由随机耳绘(WIDESPREaD)和声学模拟产生的1005个耳形和PRTFs组成的宽广数据集。在本篇文章中,我们研究了两个主要组成部分分析模型(PRA)的维度下降能力,分别是WIDESPREAD(WIDESPREEAD)和原始数据集的培训。我们发现,WIDESPREAD数据集培训的模型表现最佳,不管保留的主要组成部分有多少。