We present a novel interactive learning protocol that enables training request-fulfilling agents by verbally describing their activities. Unlike imitation learning (IL), our protocol allows the teaching agent to provide feedback in a language that is most appropriate for them. Compared with reward in reinforcement learning (RL), the description feedback is richer and allows for improved sample complexity. We develop a probabilistic framework and an algorithm that practically implements our protocol. Empirical results in two challenging request-fulfilling problems demonstrate the strengths of our approach: compared with RL baselines, it is more sample-efficient; compared with IL baselines, it achieves competitive success rates without requiring the teaching agent to be able to demonstrate the desired behavior using the learning agent's actions. Apart from empirical evaluation, we also provide theoretical guarantees for our algorithm under certain assumptions about the teacher and the environment.


翻译:我们提出了一个新颖的互动学习协议,通过口头描述他们的活动,使培训要求达到要求的代理方能够通过培训满足他们的活动。与模仿学习(IL)不同,我们的协议允许教学代理方以最适合他们的语言提供反馈。与强化学习(RL)的奖励相比,描述反馈更加丰富,可以改进样本复杂性。我们开发了一个概率框架和一个实际执行我们的协议的算法。在两个富有挑战性的满足要求问题中取得的经验性结果显示了我们方法的优势:与RL基线相比,它更具抽样效率;与IL基线相比,它实现了竞争性的成功率,而没有要求教学代理方能够利用学习代理方的行动展示所期望的行为。除了经验评估外,我们还根据对教师和环境的某些假设,为我们的算法提供理论保障。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
7+阅读 · 2018年12月26日
Residual Policy Learning
Arxiv
4+阅读 · 2018年12月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员