Identifying replicable signals across different studies provides stronger scientific evidence and more powerful inference. Existing literature on high dimensional applicability analysis either imposes strong modeling assumptions or has low power. We develop a powerful and robust empirical Bayes approach for high dimensional replicability analysis. Our method effectively borrows information from different features and studies while accounting for heterogeneity. We show that the proposed method has better power than competing methods while controlling the false discovery rate, both empirically and theoretically. Analyzing datasets from the genome-wide association studies reveals new biological insights that otherwise cannot be obtained by using existing methods.
翻译:暂无翻译