Recent results have revealed an interesting observation in a trained convolutional neural network (CNN), namely, the rank of a feature map channel matrix remains surprisingly constant despite the input images. This has led to an effective rank-based channel pruning algorithm, yet the constant rank phenomenon remains mysterious and unexplained. This work aims at demystifying and interpreting such rank behavior from a frequency-domain perspective, which as a bonus suggests an extremely efficient Fast Fourier Transform (FFT)-based metric for measuring channel importance without explicitly computing its rank. We achieve remarkable CNN channel pruning based on this analytically sound and computationally efficient metric and adopt it for repetitive pruning to demonstrate robustness via our scheme named Energy-Zoned Channels for Robust Output Pruning (EZCrop), which shows consistently better results than other state-of-the-art channel pruning methods.
翻译:最近的结果揭示了在经过训练的共变神经网络(CNN)中令人感兴趣的观察,即尽管输入图像,地貌地图频道的排名仍然令人惊讶地保持着惊人的固定状态。这导致了一个有效的基于级的频道运行算法,但固定的排名现象仍然神秘和无法解释。 这项工作的目的是从频率角度解开和解释这种排名行为,作为奖金,它表明一种非常高效的快速Fourier变换(FFT)基度测量频道的重要性,而不必明确计算其排名。 我们根据这一分析性健全和计算效率的计量法,取得了显著的CNN频道运行率,并采用它作为重复运行的标尺,通过我们称为“Robust Out Prut Prutning(EZCrop)能源区频道(EZrop)”的计划展示了稳健性。 该计划显示的结果总是比其他最先进的频道运行方法更好。