We show that the Adaptive Greedy algorithm of Golovin and Krause (2011) achieves an approximation bound of $(\ln (Q/\eta)+1)$ for Stochastic Submodular Cover: here $Q$ is the "goal value" and $\eta$ is the smallest non-zero marginal increase in utility deliverable by an item. (For integer-valued utility functions, we show a bound of $H(Q)$, where $H(Q)$ is the $Q^{th}$ Harmonic number.) Although this bound was claimed by Golovin and Krause in the original version of their paper, the proof was later shown to be incorrect by Nan and Saligrama (2017). The subsequent corrected proof of Golovin and Krause (2017) gives a quadratic bound of $(\ln(Q/\eta) + 1)^2$. Other previous bounds for the problem are $56(\ln(Q/\eta) + 1)$, implied by work of Im et al. (2016) on a related problem, and $k(\ln (Q/\eta)+1)$, due to Deshpande et al. (2016) and Hellerstein and Kletenik (2018), where $k$ is the number of states. Our bound generalizes the well-known $(\ln~m + 1)$ approximation bound on the greedy algorithm for the classical Set Cover problem, where $m$ is the size of the ground set.
翻译:我们显示,Golovin和Krause(2011年)的适应性贪婪算法近似(美元/美元(Q/\eta)+1美元),用于软体子模版封面:这里,Q美元是“目标值”,而$/eta美元是可用项目交付的最小的非零边增长。 (对于总价值的公用事业功能,我们显示的是H(Q)美元,其中H(Q)美元是美元/美元+1美元调和数。 )虽然Golovin和Krause在最初版本的纸张中声称这一约束是美元(美元/美元/美元+1美元),但后来,Nan和Saligrama(2017年)则证明这一证明是不正确的。Golovin和Krause(2017年)的更正证据使可用项目交付的最小值(美元/(Q/\eta)+1美元之间的四边框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框