Query evaluation on probabilistic databases is generally intractable (#P-hard). Existing dichotomy results have identified which queries are tractable (or safe), and connected them to tractable lineages. In our previous work, using different tools, we showed that query evaluation is linear-time on probabilistic databases for arbitrary monadic second-order queries, if we bound the treewidth of the instance. In this paper, we study limitations and extensions of this result. First, for probabilistic query evaluation, we show that MSO tractability cannot extend beyond bounded treewidth: there are even FO queries that are hard on any efficiently constructible unbounded-treewidth class of graphs. This dichotomy relies on recent polynomial bounds on the extraction of planar graphs as minors, and implies lower bounds in non-probabilistic settings, for query evaluation and match counting in subinstance-closed families. Second, we show how to explain our tractability result in terms of lineage: the lineage of MSO queries on bounded-treewidth instances can be represented as bounded-treewidth circuits, polynomial-size OBDDs, and linear-size d-DNNFs. By contrast, we can strengthen the previous dichotomy to lineages, and show that there are even UCQs with disequalities that have superpolynomial OBDDs on all unbounded-treewidth graph classes; we give a characterization of such queries. Last, we show how bounded-treewidth tractability explains the tractability of the inversion-free safe queries: we can rewrite their input instances to have bounded-treewidth.
翻译:在概率数据库上的查询评估通常是不可解的(#P难)。现有的分支结果已经确定了哪些查询是可行的(或安全的),并将它们与可追溯的家系联系起来。在我们之前的工作中,使用不同的工具,我们表明即使限制实例的树宽,任意单调二阶查询的概率查询评估也可以在概率数据库上的线性时间内完成。在本文中,我们研究了这一结果的局限性和扩展性。首先,对于概率性查询评估,我们表明MSO的可行性不能超越有界的树宽:即使对于任何有效构造的无界树宽图类,甚至有FO查询都很困难。这种分支取决于最近对从轮廓中提取平面图的多项式界限,对于子实例封闭系族的查询评估和匹配计数,它意味着非概率性环境中的下限。其次,我们展示了如何在家系中解释我们的可行性结果:有界树宽示例的MSO查询的家系可以表示为有界树宽电路,多项式大小的OBDD和线性大小的d-DNNF。相比之下,我们可以将以家系为基础的分支加强到家系,并展示有些UCQs(含有不等式)在所有无界树宽图类上都有超多项式的OBDDs;我们给出了这种查询的特征。最后,我们展示了有界树宽可行性是如何解释无反转安全查询的可行性的:我们可以将它们的输入实例重写为有界树宽。