Forecasting the water level of the Han river is important to control traffic and avoid natural disasters. There are many variables related to the Han river and they are intricately connected. In this work, we propose a novel transformer that exploits the causal relationship based on the prior knowledge among the variables and forecasts the water level at the Jamsu bridge in the Han river. Our proposed model considers both spatial and temporal causation by formalizing the causal structure as a multilayer network and using masking methods. Due to this approach, we can have interpretability that consistent with prior knowledge. In real data analysis, we use the Han river dataset from 2016 to 2021 and compare the proposed model with deep learning models.


翻译:预测汉河水位对于控制交通和避免自然灾害非常重要。 与汉河相关的变量很多,而且它们有着错综复杂的联系。 在这项工作中,我们提出一个新的变压器,根据先前对变量的了解来利用因果关系,并预测汉河Jamsu桥的水位。 我们提议的模型通过将因果结构正规化为多层网络并使用掩码方法来考虑空间和时间因果关系。 由于这一方法,我们可以按照先前的知识进行解释。 在实际数据分析中,我们使用2016至2021年的汉河数据集,并将拟议模型与深层学习模型进行比较。</s>

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【Google-BryanLim等】可解释深度学习时序预测
专知会员服务
63+阅读 · 2021年12月19日
注意力机制介绍,Attention Mechanism
专知会员服务
169+阅读 · 2019年10月13日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
58+阅读 · 2021年11月15日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员