Forecasting the water level of the Han river is important to control traffic and avoid natural disasters. There are many variables related to the Han river and they are intricately connected. In this work, we propose a novel transformer that exploits the causal relationship based on the prior knowledge among the variables and forecasts the water level at the Jamsu bridge in the Han river. Our proposed model considers both spatial and temporal causation by formalizing the causal structure as a multilayer network and using masking methods. Due to this approach, we can have interpretability that consistent with prior knowledge. In real data analysis, we use the Han river dataset from 2016 to 2021 and compare the proposed model with deep learning models.
翻译:预测汉河水位对于控制交通和避免自然灾害非常重要。 与汉河相关的变量很多,而且它们有着错综复杂的联系。 在这项工作中,我们提出一个新的变压器,根据先前对变量的了解来利用因果关系,并预测汉河Jamsu桥的水位。 我们提议的模型通过将因果结构正规化为多层网络并使用掩码方法来考虑空间和时间因果关系。 由于这一方法,我们可以按照先前的知识进行解释。 在实际数据分析中,我们使用2016至2021年的汉河数据集,并将拟议模型与深层学习模型进行比较。</s>