Gaming video streaming services have grown tremendously in the past few years, with higher resolutions, higher frame rates and HDR gaming videos getting increasingly adopted among the gaming community. Since gaming content as such is different from non-gaming content, it is imperative to evaluate the performance of the existing encoders to help understand the bandwidth requirements of such services, as well as further improve the compression efficiency of such encoders. Towards this end, we present in this paper GamingHDRVideoSET, a dataset consisting of eighteen 10-bit UHD-HDR gaming videos and encoded video sequences using four different codecs, together with their objective evaluation results. The dataset is available online at [to be added after paper acceptance]. Additionally, the paper discusses the codec compression efficiency of most widely used practical encoders, i.e., x264 (H.264/AVC), x265 (H.265/HEVC) and libvpx (VP9), as well the recently proposed encoder libaom (AV1), on 10-bit, UHD-HDR content gaming content. Our results show that the latest compression standard AV1 results in the best compression efficiency, followed by HEVC, H.264, and VP9.


翻译:由于游戏内容本身与非游戏内容不同,因此必须评估现有编码器的性能,以帮助理解这些服务的带宽要求,并进一步提高这类编码器的压缩效率。为此,我们在本论文中介绍由18个10比特的UHD-HDR游戏视频和编码视频序列组成的数据集,该数据集使用4个不同的编码器,以及其客观的评价结果。数据集可在网上查阅[纸面接受后加 。此外,本文件讨论了最广泛使用的实际编码器(即x264(H.264/AVC)、x265(H.265/HEVC)和libvpx(VP9)的编码压缩效率。为此,我们在本论文中介绍了由18个10比特UHD-HDR游戏视频和编码视频序列组成的数据集,使用4个不同的编码器及其客观的评价结果。数据集可在网上查阅[在纸面接受后添加]。此外,文件讨论了最广泛使用的编码器(即x264(H264(H26/AVC))、x26(HEVC)和livppxest 内容的压缩结果,以显示我们10比特、UVID-HC1、ADRismaprimal的最新结果。

0
下载
关闭预览

相关内容

如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
专知会员服务
44+阅读 · 2020年10月31日
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
23+阅读 · 2019年12月15日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
Arxiv
1+阅读 · 2021年4月25日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
Arxiv
3+阅读 · 2012年11月20日
VIP会员
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员