We study semidefinite programs with diagonal constraints. This problem class appears in combinatorial optimization and has a wide range of engineering applications such as in circuit design, channel assignment in wireless networks, phase recovery, covariance matrix estimation, and low-order controller design. In this paper, we give an algorithm to solve this problem to $\varepsilon$-accuracy, with a run time of $\widetilde{\mathcal{O}}(m/\varepsilon^{3.5})$, where $m$ is the number of non-zero entries in the cost matrix. We improve upon the previous best run time of $\widetilde{\mathcal{O}}(m/\varepsilon^{4.5})$ by Arora and Kale. As a corollary of our result, given an instance of the Max-Cut problem with $n$ vertices and $m \gg n$ edges, our algorithm when applied to the standard SDP relaxation of Max-Cut returns a $(1 - \varepsilon)\alpha_{GW}$ cut in time $\widetilde{\mathcal{O}}(m/\varepsilon^{3.5})$, where $\alpha_{GW} \approx 0.878567$ is the Goemans-Williamson approximation ratio. We obtain this run time via the stochastic variance reduction framework applied to the Arora-Kale algorithm, by constructing a constant-accuracy estimator to maintain the primal iterates.
翻译:我们用对等限制来研究半不尽然程序。 这个问题类别出现在组合优化中, 并具有广泛的工程应用, 比如在电路设计、 频道在无线网络中的分配、 阶段恢复、 常态矩阵估计和低阶控制器设计中。 在本文中, 我们给一个算法来解决这个问题, 以美元为准确性, 运行时间为$- 全色的顶端和 美元 。 运行时间为$ /\ g++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++