A variational modeling framework for hydraulically induced fracturing of elastic-plastic solids is developed in the present work. The developed variational structure provides a global minimization problem. While fracture propagation is modeled by means of a phase-field approach to fracture, plastic effects are taken into account by using a Drucker-Prager-type yield-criterion function. This yield-criterion function governs the plastic evolution of the fluid-solid mixture. Fluid storage and transport are described by a Darcy-Biot-type formulation. Thereby the fluid storage is decomposed into a contribution due to the elastic deformations and one due to the plastic deformations. A local return mapping scheme is used for the update of the plastic quantities. The global minimization structure demands a $H($div$)$-conforming finite-element formulation. Furthermore this is combined with an enhanced-assumed-strain formulation in order to overcome locking phenomena arising from the plastic deformations. The robustness and capabilities of the presented framework will be shown in a sequence of numerical examples.
翻译:在目前的工作中,为液态诱导的弹性塑料固体碎裂发展了一个变异模型框架。发达的变异结构提供了一个全球最小化问题。虽然骨折的传播是通过对骨折的分阶段法建模的,但塑料效应通过使用Drucker-Prager型增产标准功能得到考虑。这种产值-摄氏功能制约液体-固体混合物的塑料演化。液态储存和运输用达西-比奥特型配方描述。液体储存由于弹性变形和塑料变形而分解成一种贡献。在更新塑料数量时,将采用当地回溯映图计划。全球最小化结构需要1美元(div美元)的成型定质元素配方。此外,还结合一种强化的堆积-层配方,以克服塑料变形产生的锁定现象。在一系列数字示例中将显示所提出的框架的坚固性和能力。