The matrix majorization problem asks, given two tuples of probability vectors, whether there exists a single stochastic matrix transforming one tuple into the other. Solving an open problem due to Mu et al, we show that if certain monotones - namely multivariate extensions of Renyi divergences - are strictly ordered between the two tuples, then for sufficiently large $n$, there exists a stochastic matrix taking $n$ copies of each input distribution to $n$ copies of the corresponding output distribution. The same conditions, with non-strict ordering for the monotones, are also necessary for such asymptotic matrix majorization. Our result also yields a map that approximately converts a single copy of each input distribution to the corresponding output distribution with the help of a catalyst that is returned unchanged. Allowing for transformation with arbitrarily small error, we find conditions that are both necessary and sufficient for such catalytic matrix majorization. We derive our results by building on a general algebraic theory of preordered semirings recently developed by one of the authors. This also allows us to recover various existing results on asymptotic and catalytic majorization as well as relative majorization in a unified manner.


翻译:矩阵主要化问题询问, 鉴于概率矢量的两个图象, 是否存在单一的随机矩阵将一个图象转换成另一个图象。 解决由Mu 等人造成的一个未解决的问题, 我们显示, 如果在两个图象之间严格订购某些单质( 即Renyi差异的多变延伸), 那么在足够大的美元的情况下, 则存在一个随机矩阵, 将每个输入分布的零美元副本带到相应的输出分布量的一美元副本。 同样的条件, 以及单质的非严格订购, 也是类似条件 。 我们的结果还产生一张地图, 大约将每个输入分布的单一副本转换为相应的输出分布, 并且得到一个已返回的催化剂的帮助。 允许发生任意小错误的转换, 我们发现一个条件, 既有必要, 也足以实现这种催化矩阵的主要化。 我们通过一个作者最近开发的预定的精度精度精度精度精度精度理论来得出我们的结果 。 这也使我们能够在主要相对化方面恢复各种现有的结果。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
54+阅读 · 2022年1月1日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员