The degree of semantic relatedness of two units of language has long been considered fundamental to understanding meaning. Additionally, automatically determining relatedness has many applications such as question answering and summarization. However, prior NLP work has largely focused on semantic similarity, a subset of relatedness, because of a lack of relatedness datasets. In this paper, we introduce a dataset for Semantic Textual Relatedness, STR-2022, that has 5,500 English sentence pairs manually annotated using a comparative annotation framework, resulting in fine-grained scores. We show that human intuition regarding relatedness of sentence pairs is highly reliable, with a repeat annotation correlation of 0.84. We use the dataset to explore questions on what makes sentences semantically related. We also show the utility of STR-2022 for evaluating automatic methods of sentence representation and for various downstream NLP tasks. Our dataset, data statement, and annotation questionnaire can be found at: https://doi.org/10.5281/zenodo.7599667
翻译:长期以来,人们一直认为两种语言单位的语义关联程度是理解含义的根本。此外,自动确定关联性有许多应用,如问答和概括等。然而,先前的《国家语言计划》工作主要侧重于语义相似性,因为缺乏关联性数据集,因此其关联性是一个子项。在本文中,我们为语义文字关联性引入了一个数据集,STR-2022, 其5,500对英文句子使用比较说明框架手工附加附加说明,导致细微分数。我们显示,与对同的句子关联性有关的人类直觉非常可靠,重复说明相关性为0.84。我们利用数据集探索如何使判决具有语义关联性的问题。我们还展示了STR-2022对评价自动量刑方法和下游国家语言任务的作用。我们的数据集、数据说明和注释调查表见:https://doi.org/10.5281/zeno.75967。我们用STR-2022来评估判决代表的自动方法和各种下游国家语言任务。我们的数据集、数据说明和注释性调查表见https://doi/10.org.5281/zenodo.9667。