Multistate current status (CS) data presents a more severe form of censoring due to the single observation of study participants transitioning through a sequence of well-defined disease states at random inspection times. Moreover, these data may be clustered within specified groups, and informativeness of the cluster sizes may arise due to the existing latent relationship between the transition outcomes and the cluster sizes. Failure to adjust for this informativeness may lead to a biased inference. Motivated by a clinical study of periodontal disease (PD), we propose an extension of the pseudo-value approach to estimate covariate effects on the state occupation probabilities (SOP) for these clustered multistate CS data with informative cluster or subcluster sizes. In our approach, the proposed pseudo-value technique initially computes marginal estimators of the SOP utilizing nonparametric regression. Next, the estimating equations based on the corresponding pseudo-values are reweighted by functions of the cluster sizes to adjust for informativeness. We perform a variety of simulation studies to study the properties of our pseudo-value regression based on the nonparametric marginal estimators under different scenarios of informativeness. For illustration, the method is applied to the motivating PD dataset, which encapsulates the complex data-generating mechanism.
翻译:多状态现状(CS)数据显示出一种更为严厉的审查形式,因为研究参与者在随机检查时间通过一系列明确界定的疾病状态进行转换时,其观察结果显示的是单一的观察,这种审查形式更为严厉。此外,这些数据可能集中在特定组别中,而且由于过渡结果和组群大小之间现有的潜在关系,群集规模的信息性可能出现。如果不对这种信息性进行调整,可能导致偏差推论。根据对周期性疾病的临床研究(PD),我们提议扩大假价值方法,以估计这些组群多状态(SOP)数据对具有信息性聚群集或亚组群尺寸的CS数据对状态职业概率(SOP)的共变率(SOP)的影响。在我们的方法中,拟议的伪价值技术最初利用非参数回归法计算SOP的边际估测值。根据相应的伪值估算方程式,根据群群群体大小的功能进行再加权,以适应信息性调整。我们进行了各种模拟研究,以研究我们基于非参数边际点边际测算模型或子组群集体大小的数据回归的特性。在不同的数据模型中采用的模型显示。