Network embedding (NE) approaches have emerged as a predominant technique to represent complex networks and have benefited numerous tasks. However, most NE approaches rely on a homophily assumption to learn embeddings with the guidance of supervisory signals, leaving the unsupervised heterophilous scenario relatively unexplored. This problem becomes especially relevant in fields where a scarcity of labels exists. Here, we formulate the unsupervised NE task as an r-ego network discrimination problem and develop the SELENE framework for learning on networks with homophily and heterophily. Specifically, we design a dual-channel feature embedding pipeline to discriminate r-ego networks using node attributes and structural information separately. We employ heterophily adapted self-supervised learning objective functions to optimise the framework to learn intrinsic node embeddings. We show that SELENE's components improve the quality of node embeddings, facilitating the discrimination of connected heterophilous nodes. Comprehensive empirical evaluations on both synthetic and real-world datasets with varying homophily ratios validate the effectiveness of SELENE in homophilous and heterophilous settings showing an up to 12.52% clustering accuracy gain.
翻译:网络嵌入(NE)方法已成为代表复杂网络的主要技术,并获益于许多任务。然而,大多数网络嵌入(NE)方法都依赖于一种单一的假设,即学习嵌入与监督信号的指导,使不受监督的异性杂交假设相对没有探索。这个问题在标签稀缺的领域变得特别相关。在这里,我们将不受监督的NE任务作为网络歧视问题来制定,并发展SELENE框架,用于在与同系和异系网络的网络上学习。具体地说,我们设计双通道嵌入管道,用节点属性和结构信息分别来区分 r-ego 网络。我们使用精心调整的自我监督的学习客观功能,优化框架以学习内在的杂交嵌入。我们显示,SELENE的组件提高了节点嵌入的质量,促进了对关联性嗜血性节点的区别。对合成和现实世界数据集的全面经验评价,其不同的同系比分别用于确认SELENE在同性恋组合中的有效性。我们证明SELENE的组合组合和向黑系的组合环境的有效性。