Stragglers, Byzantine workers, and data privacy are the main bottlenecks in distributed cloud computing. Several prior works proposed coded computing strategies to jointly address all three challenges. They require either a large number of workers, a significant communication cost or a significant computational complexity to tolerate malicious workers. Much of the overhead in prior schemes comes from the fact that they tightly couple coding for all three problems into a single framework. In this work, we propose Verifiable Coded Computing (VCC) framework that decouples Byzantine node detection challenge from the straggler tolerance. VCC leverages coded computing just for handling stragglers and privacy, and then uses an orthogonal approach of verifiable computing to tackle Byzantine nodes. Furthermore, VCC dynamically adapts its coding scheme to tradeoff straggler tolerance with Byzantine protection and vice-versa. We evaluate VCC on compute intensive distributed logistic regression application. Our experiments show that VCC speeds up the conventional uncoded implementation of distributed logistic regression by $3.2\times-6.9\times$, and also improves the test accuracy by up to $12.6\%$.
翻译:Stragglers、 Byzantine 工人和数据隐私是分布式云计算的主要瓶颈。 几个先前的工程提出了共同应对所有这三项挑战的编码计算战略, 需要大量工人、 大量的通信成本或大量复杂的计算来容忍恶意工人。 先前的计划中的大部分间接费用来自他们为所有三个问题紧密地将代码编码合并成一个单一的框架。 在这项工作中, 我们提议了可核实的编码计算框架, 将 Byzantine 节点从 stragler 容忍 中分解出来。 VCC 的编码计算杠杆只是用于处理 strggler 和 隐私, 然后使用一种可核实的正统计算方法来对付 Byzantine 节点。 此外, VCC 动态地调整其编码计划, 以将所有三个问题与 Byzantine 保护和 反向一个框架进行交易。 我们评价 VCC 的压缩 密集分布式物流回归应用软件。 我们的实验显示, VCC 加速了常规的未编码的逻辑回归执行速度, 由3.2\ 6. 和12\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\