Federated learning is an emerging technique for training models from decentralized data sets. In many applications, data owners participating in the federated learning system hold not only the data but also a set of domain knowledge. Such knowledge includes human know-how and craftsmanship that can be extremely helpful to the federated learning task. In this work, we propose a federated learning framework that allows the injection of participants' domain knowledge, where the key idea is to refine the global model with knowledge locally. The scenario we consider is motivated by a real industry-level application, and we demonstrate the effectiveness of our approach to this application.
翻译:联邦学习是分散化数据集培训模式的一种新兴技术,在许多应用中,参加联邦学习系统的数据所有者不仅掌握数据,而且掌握一套领域知识,这些知识包括能对联邦学习任务极有帮助的人类专门技能和工艺技能。在这项工作中,我们建议建立一个联邦学习框架,以便注入参与者的域知识,其中关键的想法是在当地利用知识完善全球模式。我们认为,这种情景的动机是实业界一级的应用,我们展示了我们采用的方法的有效性。