Binary neural networks (BNNs) have attracted broad research interest due to their efficient storage and computational ability. Nevertheless, a significant challenge of BNNs lies in handling discrete constraints while ensuring bit entropy maximization, which typically makes their weight optimization very difficult. Existing methods relax the learning using the sign function, which simply encodes positive weights into +1s, and -1s otherwise. Alternatively, we formulate an angle alignment objective to constrain the weight binarization to {0,+1} to solve the challenge. In this paper, we show that our weight binarization provides an analytical solution by encoding high-magnitude weights into +1s, and 0s otherwise. Therefore, a high-quality discrete solution is established in a computationally efficient manner without the sign function. We prove that the learned weights of binarized networks roughly follow a Laplacian distribution that does not allow entropy maximization, and further demonstrate that it can be effectively solved by simply removing the $\ell_2$ regularization during network training. Our method, dubbed sign-to-magnitude network binarization (SiMaN), is evaluated on CIFAR-10 and ImageNet, demonstrating its superiority over the sign-based state-of-the-arts. Code is at https://github.com/lmbxmu/SiMaN.


翻译:双线神经网络(BNNs)因其高效的存储和计算能力而吸引了广泛的研究兴趣。然而,BNNs所面临的一项重大挑战在于处理离散限制,同时确保小微增殖最大化,这通常使其重量优化非常困难。现有的方法会放松使用信号功能的学习,该功能只是将正重编码为+1和 -1 。或者,我们制定了一个角度调整目标,将重量的二进制限制在 {0+1} 以克服挑战。在本文中,我们显示我们体重的二进制提供了一种分析解决方案,将高负重编码为+1 和 0 。因此,一个高质量的离散解决方案以计算效率的方式建立,而没有信号功能。我们证明,二进化网络所学的重量大致沿着拉巴氏分布而不能实现最大化,并进一步表明,只要在网络训练中简单地取消$@ell_2$musual,就能有效地解决这个问题。我们的方法、调制的标志-magenti-magnity 网络(MAi-Magibx-maral) pressimalizalizalizalization,正在对 IMS-Risalation.

0
下载
关闭预览

相关内容

【Facebook AI】低资源机器翻译,74页ppt
专知会员服务
29+阅读 · 2020年4月8日
专知会员服务
109+阅读 · 2020年3月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年4月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
0+阅读 · 2021年4月8日
Arxiv
0+阅读 · 2021年4月8日
Arxiv
4+阅读 · 2018年2月19日
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年4月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员