We consider Bayesian multiple hypothesis problem with independent and identically distributed observations. The classical, Sanov's theorem-based, analysis of the error probability allows one to characterize the best achievable error exponent. However, this analysis does not generalize to the case where the true distributions of the hypothesis are not exact or partially known via some nominal distributions. This problem has practical significance, because the nominal distributions may be quantized versions of the true distributions in a hardware implementation, or they may be estimates of the true distributions obtained from labeled training sequences as in statistical classification. In this paper, we develop a type-based analysis to investigate Bayesian multiple hypothesis testing problem. Our analysis allows one to explicitly calculate the error exponent of a given type and extends the classical analysis. As a generalization of the proposed method, we derive a robust test and obtain its error exponent for the case where the hypothesis distributions are not known but there exist nominal distribution that are close to true distributions in variational distance.


翻译:我们认为贝叶斯的多重假设存在独立且分布相同的观测问题。 古典, Sanov 的理论理论, 对错误概率的分析使得人们能够描述最佳可实现的错误提示。 但是, 本分析没有概括到假设的真实分布并不精确或通过某种名义分布部分为人们所知的情况。 这个问题具有实际意义, 因为名义分布可能是硬件实施中真实分布的量化版本, 或者它们可能是从标签培训序列中获取的真实分布与统计分类一样的估计数。 在本文中, 我们开发了一种基于类型的分析, 以调查巴伊西亚多重假设测试问题。 我们的分析允许一个人明确计算某一类型错误的缩写, 并扩展经典分析。 作为拟议方法的概括性, 我们得出一个强有力的测试, 并获得其错误提示, 因为假设分布并不为已知, 但是存在接近于变异距离中真实分布的标称分布 。

0
下载
关闭预览

相关内容

【2021新书】ApachePulsar 实战,402页pdf
专知会员服务
69+阅读 · 2021年12月29日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年12月31日
Arxiv
0+阅读 · 2021年12月30日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
3+阅读 · 2018年10月11日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员