Testing uniformity of a sample supported on the hypersphere is one of the first steps when analysing multivariate data for which only the directions (and not the magnitudes) are of interest. In this work, a projection-based Cram\'er-von Mises test of uniformity on the hypersphere is introduced. This test can be regarded as an extension of the well-known Watson test of circular uniformity to the hypersphere. The null asymptotic distribution of the test statistic is obtained and, via numerical experiments, shown to be tractable and practical. A novel study on the uniformity of the distribution of craters on Venus illustrates the usage of the test.


翻译:在分析多变量数据时,在超视镜上支持的样本的统一性测试是第一步之一,分析这些数据时,只有方向(而不是数量)才有意义。在这项工作中,采用了基于投射的Cram\'er-von Mises 测试,对超视镜进行了统一性测试。这一测试可被视为著名的Watson测试,将圆形统一的测试扩展至超视镜。获得测试统计数据的无症状分布,通过数字实验显示,测试统计数据的可移植性和实用性。关于金星上弹坑分布的统一性的新研究展示了测试的使用情况。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Arxiv
0+阅读 · 2021年9月22日
VIP会员
相关VIP内容
专知会员服务
77+阅读 · 2021年3月16日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员