A Semidefinite Programming (SDP) relaxation is an effective computational method to solve a Sensor Network Localization problem, which attempts to determine the locations of a group of sensors given the distances between some of them [11]. In this paper, we analyze and determine new sufficient conditions and formulations that guarantee that the SDP relaxation is exact, i.e., gives the correct solution. These conditions can be useful for designing sensor networks and managing connectivities in practice. Our main contribution is twofold: We present the first non-asymptotic bound on the connectivity or radio range requirement of the sensors in order to ensure the network is uniquely localizable. Determining this range is a key component in the design of sensor networks, and we provide a result that leads to a correct localization of each sensor, for any number of sensors. Second, we introduce a new class of graphs that can always be correctly localized by an SDP relaxation. Specifically, we show that adding a simple objective function to the SDP relaxation model will ensure that the solution is correct when applied to a triangulation graph. Since triangulation graphs are very sparse, this is informationally efficient, requiring an almost minimal amount of distance information. We also analyze a number objective functions for the SDP relaxation to solve the localization problem for a general graph.
翻译:半限定程序( SDP) 松绑是一种有效的计算方法,可以解决传感器网络本地化问题,它试图确定一组传感器的位置,因为某些传感器之间的距离[11] 。在本文件中,我们分析和确定新的足够条件和配方,以保证SDP的放松是准确的,即提供正确的解决办法。这些条件对于设计传感器网络和在实践中管理连接是有用的。我们的主要贡献是双重的:我们对传感器的连接或无线电范围要求提出了第一个非被动约束,以确保网络具有独特的本地化。确定这一范围是传感器网络设计中的一个关键组成部分,我们提供的结果可以使每个传感器的正确本地化,任何传感器都有正确的本地化,即提供正确的解决方案。第二,我们引入一个新的图表类别,通过SDP的放松总是可以正确本地化。具体地说,我们在SDP的放松模型中添加一个简单的目标功能,将确保在对三角图应用时,解决方案是正确的。由于三角图非常稀少,因此,确定这一范围是传感器网络设计中的一个关键组成部分,我们提供的结果是使每个传感器对每个传感器进行正确本地化,对于任何传感器来说都具有一种信息效率。我们为SDP一般的分辨率分析需要一个最起码的分辨率。