The data-driven recovery of the unknown governing equations of dynamical systems has recently received an increasing interest. However, the identification of governing equations remains challenging when dealing with noisy and partial observations. Here, we address this challenge and investigate variational deep learning schemes. Within the proposed framework, we jointly learn an inference model to reconstruct the true states of the system and the governing laws of these states from series of noisy and partial data. In doing so, this framework bridges classical data assimilation and state-of-the-art machine learning techniques. We also demonstrate that it generalises state-of-the-art methods. Importantly, both the inference model and the governing model embed stochastic components to account for stochastic variabilities, model errors, and reconstruction uncertainties. Various experiments on chaotic and stochastic dynamical systems support the relevance of our scheme w.r.t. state-of-the-art approaches.


翻译:数据驱动对动态系统未知的治理方程式的恢复最近引起了越来越多的兴趣,然而,在处理吵闹和局部观测时,确定治理方程式仍具有挑战性。在这里,我们应对这一挑战并调查各种深层次学习计划。在拟议框架内,我们共同从一系列吵闹和局部数据中学习一个推论模型,以重建系统的真实状态和各州的治理法律。在这样做的过程中,这个框架连接了古典数据同化和最先进的机器学习技术。我们还表明,它概括了最新的方法。重要的是,推论模型和治理模型都包含随机组成部分,以说明可视性差异、模型错误和重建不确定性。关于混乱和随机动态系统的各种实验支持了我们的系统(w.r.t.st-st-t.)的实用性。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
3+阅读 · 2018年10月5日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
14+阅读 · 2020年12月17日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
3+阅读 · 2018年10月5日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
3+阅读 · 2017年12月14日
Top
微信扫码咨询专知VIP会员