We study the problem of dynamically allocating indivisible items to a group of agents in a fair manner. Due to the negative results to achieve fairness when allocations are irrevocable, we allow adjustments to make fairness attainable with the objective to minimize the number of adjustments. For restricted additive or general identical valuations, we show that envy-freeness up to one item (EF1) can be achieved at no cost. For additive valuations, we give an EF1 algorithm that requires $O(mT)$ adjustments, where $m$ is the maximum number of different valuations for items among all agents. We further impose the contiguity constraint on items and require that each agent obtains a consecutive block of items. We present extensive results to achieve either proportionality with an additive approximate factor or EF1. In particular, we establish matching lower and upper bounds for identical valuations to achieve approximate proportionality. We also show that it's hopeless to make any significant improvement when valuations are nonidentical. Our results exhibit a large discrepancy between the identical and nonidentical cases in both contiguous and noncontiguous settings. All our positive results are computationally efficient.


翻译:我们以公平的方式研究将不可分割的物品动态分配给一组代理商的问题。由于在不可撤销分配时实现公平而产生消极结果,我们允许进行调整,以实现公平,从而达到尽可能减少调整次数的目标。关于限制性添加剂或一般相同的估值,我们表明,可以免费达到一个项目(EF1)的无嫉妒程度。对于添加剂估值,我们给出一种EF1算法,需要调整美元(mT),其中美元是所有代理商之间对物品的不同估值的最大数额。我们进一步对物品施加毗连限制,要求每个代理商获得一整块连续的项目。我们提出广泛的结果,用一个相加近因或EF1实现相称性。特别是,我们为相同的估值设定了相应的下限和上限,以达到大致的相称性。我们还表明,如果估值不相同,则没有任何重大改进的余地。我们的结果显示,在毗连和不相连不相联的环境下,都存在相同的和不相同的案例之间存在很大的差异。我们所有的积极结果都是计算有效的。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年12月19日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
37+阅读 · 2021年2月10日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员