In this paper, we present augmentation inside the network, a method that simulates data augmentation techniques for computer vision problems on intermediate features of a convolutional neural network. We perform these transformations, changing the data flow through the network, and sharing common computations when it is possible. Our method allows us to obtain smoother speed-accuracy trade-off adjustment and achieves better results than using standard test-time augmentation (TTA) techniques. Additionally, our approach can improve model performance even further when coupled with test-time augmentation. We validate our method on the ImageNet-2012 and CIFAR-100 datasets for image classification. We propose a modification that is 30% faster than the flip test-time augmentation and achieves the same results for CIFAR-100.
翻译:在本文中,我们介绍网络内部的扩增,这是一种模拟数据扩增技术的方法,用来模拟在进化神经网络的中间特征上计算机视觉问题的数据扩增技术。我们进行这些变换,改变通过网络的数据流,并在可能时分享共同计算。我们的方法使我们能够获得更平稳的速度-准确性交换调整,并取得比使用标准测试-时间扩增技术更好的结果。此外,我们的方法甚至可以进一步提高模型性能,同时加上测试-时间增强。我们验证了我们在图像网络-2012和CIFAR-100数据集中用于图像分类的方法。我们提出了比翻转测试-加速速度快30%的修改,并为CIFAR-100取得了同样的结果。