Cracks and keyhole pores are detrimental defects in alloys produced by laser directed energy deposition (LDED). Laser-material interaction sound may hold information about underlying complex physical events such as crack propagation and pores formation. However, due to the noisy environment and intricate signal content, acoustic-based monitoring in LDED has received little attention. This paper proposes a novel acoustic-based in-situ defect detection strategy in LDED. The key contribution of this study is to develop an in-situ acoustic signal denoising, feature extraction, and sound classification pipeline that incorporates convolutional neural networks (CNN) for online defect prediction. Microscope images are used to identify locations of the cracks and keyhole pores within a part. The defect locations are spatiotemporally registered with acoustic signal. Various acoustic features corresponding to defect-free regions, cracks, and keyhole pores are extracted and analysed in time-domain, frequency-domain, and time-frequency representations. The CNN model is trained to predict defect occurrences using the Mel-Frequency Cepstral Coefficients (MFCCs) of the lasermaterial interaction sound. The CNN model is compared to various classic machine learning models trained on the denoised acoustic dataset and raw acoustic dataset. The validation results shows that the CNN model trained on the denoised dataset outperforms others with the highest overall accuracy (89%), keyhole pore prediction accuracy (93%), and AUC-ROC score (98%). Furthermore, the trained CNN model can be deployed into an in-house developed software platform for online quality monitoring. The proposed strategy is the first study to use acoustic signals with deep learning for insitu defect detection in LDED process.


翻译:裂纹和孔洞是激光定向能沉积(LDED)生产合金过程中有害的缺陷。激光-材料交互声可以揭示一些关于裂纹扩展和孔洞形成等底层物理事件的信息。然而,由于嘈杂的环境和错综复杂的信号内容,LDED中基于声学的监测受到了很少的关注。本文提出了一种新的基于声学信号的LDED原位缺陷检测策略。本研究的主要贡献是开发了一种原位声学信号去噪、特征提取和声音分类流程,其中包括使用卷积神经网络(CNN)来进行在线缺陷预测。显微镜图像用于识别部件内裂纹和孔洞的位置。缺陷位置与声学信号进行时空注册。对应于无缺陷区域、裂纹和孔洞的各种声学特征在时域、频域和时频表示中进行提取和分析。使用激光-材料交互声的Mel频率倒谱系数(MFCCs)训练CNN模型,以预测缺陷出现的可能性。CNN模型与在去噪声学数据集和原始声学数据集上训练的其他经典机器学习模型进行比较。验证结果表明,训练CNN模型在去噪数据集上的性能最优,具有最高的总体准确性(89%)、孔洞预测准确性(93%)和AUC-ROC得分(98%)。此外,训练好的CNN模型可以部署到一个内部开发的软件平台上进行在线质量监测。提出的策略是第一篇使用声学信号结合深度学习进行LDED原位缺陷检测的研究。

0
下载
关闭预览

相关内容

【2022新书】深度学习R语言实战,第二版,568页pdf
专知会员服务
82+阅读 · 2022年10月23日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
【泡泡汇总】最强 SLAM Datasets 合辑
泡泡机器人SLAM
16+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
21+阅读 · 2022年2月24日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
24+阅读 · 2021年1月25日
VIP会员
相关VIP内容
【2022新书】深度学习R语言实战,第二版,568页pdf
专知会员服务
82+阅读 · 2022年10月23日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
【泡泡汇总】最强 SLAM Datasets 合辑
泡泡机器人SLAM
16+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员