Good predictors of ICU Mortality have the potential to identify high-risk patients earlier, improve ICU resource allocation, or create more accurate population-level risk models. Machine learning practitioners typically make choices about how to represent features in a particular model, but these choices are seldom evaluated quantitatively. This study compares the performance of different representations of clinical event data from MIMIC II in a logistic regression model to predict 36-hour ICU mortality. The most common representations are linear (normalized counts) and binary (yes/no). These, along with a new representation termed "hill", are compared using both L1 and L2 regularization. Results indicate that the introduced "hill" representation outperforms both the binary and linear representations, the hill representation thus has the potential to improve existing models of ICU mortality.


翻译:脑力综合症死亡率的良好预测者有可能更早地发现高风险患者,改进脑力综合症综合症资源分配,或创建更准确的人口风险模型。机器学习实践者通常会选择如何在特定模型中体现特征,但很少对这些选择进行定量评估。本研究比较了二期综合症综合症二期临床事件数据的不同表现表现,以预测36小时的重症综合症综合症死亡率。最常见的表现是线性(正常计数)和二元性(是/否 ) 。这些以及称为“丘”的新表现都使用L1和L2正规化方法进行比较。结果显示,引入的“丘”表现方式超越了二进制和线性表现方式,因此山地代表方式有可能改进现有的综合症综合症死亡率模式。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
159+阅读 · 2020年1月16日
专知会员服务
53+阅读 · 2019年12月22日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2020年4月12日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
10+阅读 · 2018年3月22日
VIP会员
相关VIP内容
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
159+阅读 · 2020年1月16日
专知会员服务
53+阅读 · 2019年12月22日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员