Mixture-of-Experts (MoE) models have become a widely-adopted solution to continue scaling model sizes without a corresponding linear increase in compute. During MoE model training, each input token is dynamically routed to a subset of experts -- sparsely-activated feed-forward networks -- within each transformer layer. The distribution of tokens assigned to each expert varies widely and rapidly over the course of training. To handle the wide load imbalance across experts, current systems are forced to either drop tokens assigned to popular experts, degrading convergence, or frequently rebalance resources allocated to each expert based on popularity, incurring high state migration overheads. To break this performance-accuracy tradeoff, we introduce SYMI, an adaptive MoE training system. The key insight of SYMI is to decouple the placement of expert parameters from their large optimizer state. SYMI statically partitions the optimizer of each expert across all training nodes. Meanwhile, SYMI dynamically adjusts the placement of expert parameters by repurposing existing weight updates, avoiding migration overheads. In doing so, SYMI right-sizes the GPU resources allocated to each expert, on a per-iteration basis, with minimal overhead. Compared to state-of-the-art MoE training systems, DeepSpeed and FlexMoE, SYMI is able to achieve a 30.5% and 25.9% faster time-to-convergence, respectively.


翻译:专家混合(MoE)模型已成为一种广泛采用的解决方案,可在不线性增加计算量的情况下持续扩展模型规模。在MoE模型训练过程中,每个输入词元被动态路由至每个Transformer层内的专家子集——稀疏激活的前馈网络。训练过程中分配给各专家的词元分布存在显著差异且变化迅速。为处理专家间严重的负载不均衡问题,现有系统被迫丢弃分配给热门专家的词元(导致收敛性下降),或根据专家热度频繁重新分配资源(产生高昂的状态迁移开销)。为突破这种性能与精度的权衡,我们提出了自适应MoE训练系统SYMI。SYMI的核心思想是将专家参数的放置位置与其庞大的优化器状态解耦。SYMI将每个专家的优化器静态分区至所有训练节点,同时通过复用现有的权重更新动态调整专家参数的放置位置,从而避免迁移开销。通过这种方式,SYMI能够以最小开销实现每轮迭代中为各专家精准分配GPU资源。相较于最先进的MoE训练系统DeepSpeed和FlexMoE,SYMI分别实现了30.5%和25.9%的收敛速度提升。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员