In this work, we study the solution of shortest vector problems (SVPs) arising in terms of learning with error problems (LWEs). LWEs are linear systems of equations over a modular ring, where a perturbation vector is added to the right-hand side. This type of problem is of great interest, since LWEs have to be solved in order to be able to break lattice-based cryptosystems as the Module-Lattice-Based Key-Encapsulation Mechanism published by NIST in 2024. Due to this fact, several classical and quantum-based algorithms have been studied to solve SVPs. Two well-known algorithms that can be used to simplify a given SVP are the Lenstra-Lenstra-Lov\'asz (LLL) algorithm and the Block Korkine-Zolotarev (BKZ) algorithm. LLL and BKZ construct bases that can be used to compute or approximate solutions of the SVP. We study the performance of both algorithms for SVPs with different sizes and modular rings. Thereby, application of LLL or BKZ to a given SVP is considered to be successful if they produce bases containing a solution vector of the SVP.
翻译:暂无翻译