Lambek calculus with a relevant modality $!\mathbf{L^*}$ of arXiv:1601.06303 syntactically resolves parasitic gaps in natural language. It resembles the Lambek calculus with anaphora $\mathbf{LA}$ of (J\"ager, 1998) and the Lambek calculus with controlled contraction, $\mathbf{L}_{\Diamond}$, of arXiv:1905.01647v1 which deal with anaphora and ellipsis. What all these calculi add to Lambek calculus is a copying and moving behaviour. Distributional semantics is a subfield of Natural Language Processing that uses vector space semantics for words via co-occurrence statistics in large corpora of data. Compositional vector space semantics for Lambek Calculi are obtained via the DisCoCat models arXiv:1003.4394v1. $\mathbf{LA}$ does not have a vector space semantics and the semantics of $\mathbf{L}_{\Diamond}$ is not compositional. Previously, we developed a DisCoCat semantics for $!\mathbf{L^*}$ and focused on the parasitic gap applications. In this paper, we use the vector space instance of that general semantics and show how one can also interpret anaphora, ellipsis, and for the first time derive the sloppy vs strict vector readings of ambiguous anaphora with ellipsis cases. The base of our semantics is tensor algebras and their finite dimensional variants: the Fermionic Fock spaces of Quantum Mechanics. We implement our model and experiment with the ellipsis disambiguation task of arXiv:1905.01647.
翻译:Lambek calculus, 其相关模式为 $!\\ mathbf{L ⁇ L}, 其值为 ARXiv: 1601.064303, 其合成能解决自然语言中的寄生性值差距。 它类似于 Lambek calculs, 其值为 anaphora $\\ mathbf{LA}, 其值为 (J\'Ager, 1998), 其值为 Lambek calcules, 其相关模式为 $ 190xiv: 1905. 0.1647v.1, 其值为 anXiv: 190, elphora 和 ellipsis: 1601.0606303 。 所有这些计算器添加到兰贝克 的递增量值为复制和移动行为。 分配语系的计算器是一个子域处理的子域, 其值通过数据大团的共振动统计来表达空间的文。 立体空间矢量空间变变变数空间变变数空间变变数空间变数和变数的计算, 其变数的计算系统是 。