We consider the problem of identifying possibly discontinuous doping profiles in semiconductor devices from data obtained by\,stationary voltage-current maps. In particular, we focus on the so-called unipolar case, a system of PDE's derived directly from the drift diffusion equations. The related inverse problem corresponds to an inverse conductivity problem with partial data. The identification issue for this inverse problem is considered. In particular, for a discretized version of the problem, we derive a result connected to diffusion tomography theory. A numerical approach for the identification problem using level set methods is presented. Our method is compared with previous results in the literature, where Landweber-Kaczmarz type methods were used to solve a similar problem.
翻译:我们考虑了从/静止电压-流动地图获得的数据中确定半导体装置中可能不连续的剂量剖面的问题,特别是我们侧重于所谓的单极情况,即直接从漂移扩散方程式中产生的PDE系统。与此相关的反向问题与部分数据的反导性问题相对应。考虑了这一反向问题的辨别问题。特别是,对于问题的分解版本,我们得出了一个与传播透视学理论有关的结果。提出了使用水平设定方法的识别问题的数字方法。我们的方法与文献中以前的结果进行了比较,在文献中,Landweber-Kaczmarz类型方法被用来解决类似的问题。