Leader-based consensus protocols must undergo a view-change phase to elect a new leader when the current leader fails. The new leader is often decided upon a candidate server that collects votes from a quorum of servers. However, voting-based election mechanisms intrinsically cause competition in leadership candidacy when each candidate collects only partial votes. This split-vote scenario can result in no leadership winner and prolong the undesired view-change period. In this paper, we investigate a case study of Raft's leader election mechanism and propose a new leader election protocol, called ESCAPE, that fundamentally solves split votes by prioritizing servers based on their log responsiveness. ESCAPE dynamically assigns servers with a configuration that offers different priorities through Raft's periodic heartbeat. In each assignment, ESCAPE keeps track of server log responsiveness and assigns configurations that are inclined to win an election to more up-to-date servers, thereby preparing a pool of prioritized candidates. Consequently, when the next election takes place, the candidate with the highest priority will defeat its counterparts and becomes the next leader without competition. The evaluation results show that ESCAPE progressively reduces the leader election time when the cluster scales up, and the improvement becomes more significant under message loss.


翻译:以领导人为基础的共识协议必须经过一个改变观点的阶段, 以便在现任领导人失败时选出新领导人。 新领导人通常由从服务器的法定人数中收集选票的候选人服务器来决定。 但是, 以投票为基础的选举机制必然在每位候选人只收集部分选票时导致领导候选人的竞争。 这种分裂投票的情景可能导致没有领导赢家,延长不理想的改变观点期。 在本文中, 我们调查对拉夫特领导人选举机制的案例研究, 并提出一个新的领导人选举程序, 称为ESCAE, 从根本上通过根据服务器的日志响应性确定服务器的优先次序来解决分歧。 ESCAE 动态地指派服务器配置, 其配置通过拉夫特的定期心跳提供不同优先的配置。 在每次任务中, ESCAPE 都跟踪服务器记录响应性和配置, 并分配倾向于赢得更现代化的服务器选举的配置, 从而建立一批优先候选人。 因此, 在下次选举进行时, 最优先的候选人将击败对手, 并成为下一个没有竞争的领袖。 评价结果显示, 亚太经社会选举结果显示, 当集群规模扩大后, 将逐渐减少领导人的选举时间, 。

0
下载
关闭预览

相关内容

Stanford的Diego Ongaro和John Ousterhout提出了Raft算法,这是一个更容易理解的分布式一致性算法,在算法的论文中,不仅详细描述了算法,甚至给出了RPC接口定义和伪代码,这显然更加容易应用到工程实践中。
【DeepMind】强化学习教程,83页ppt
专知会员服务
151+阅读 · 2020年8月7日
Uber AI NeurIPS 2019《元学习meta-learning》教程,附92页PPT下载
专知会员服务
112+阅读 · 2019年12月13日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Risk and optimal policies in bandit experiments
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关VIP内容
【DeepMind】强化学习教程,83页ppt
专知会员服务
151+阅读 · 2020年8月7日
Uber AI NeurIPS 2019《元学习meta-learning》教程,附92页PPT下载
专知会员服务
112+阅读 · 2019年12月13日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员