This article proposes a method to diminish the pose (position plus attitude) drift experienced by an SVO (Semi-Direct Visual Odometry) based visual navigation system installed onboard a UAV (Unmanned Air Vehicle) by supplementing its pose estimation non linear optimizations with priors based on the outputs of a GNSS (Global Navigation Satellite System) Denied inertial navigation system. The method is inspired in a PI (Proportional Integral) control system, in which the attitude, altitude, and rate of climb inertial outputs act as targets to ensure that the visual estimations do not deviate far from their inertial counterparts. The resulting IA-VNS (Inertially Assisted Visual Navigation System) achieves major reductions in the horizontal position drift inherent to the GNSS-Denied navigation of autonomous fixed wing low SWaP (Size, Weight, and Power) UAVs. Additionally, the IA-VNS can be considered as a virtual incremental position (ground velocity) sensor capable of providing observations to the inertial filter. Stochastic high fidelity Monte Carlo simulations of two representative scenarios involving the loss of GNSS signals are employed to evaluate the results and to analyze their sensitivity to the terrain type overflown by the aircraft as well as to the quality of the onboard sensors on which the priors are based. The author releases the C ++ implementation of both the navigation algorithms and the high fidelity simulation as open-source software.


翻译:本条建议采用一种方法来减少在无人驾驶航空器上安装的基于SVO(Semi-Direct Ovision Odorism)的视觉导航系统所经历的外形(位置加姿态)漂移,办法是根据全球导航卫星系统(全球导航卫星系统)的输出结果,用前期的预估来补充非线性优化,减少在无人惯性惯性导航系统上安装的基于SVO(Semi-Direct 视觉观测仪)的视觉导航系统所经历的外形(位置加姿态)漂移;该方法的灵感来自PI(PI(Proportal Integral综合)控制系统,其中姿态、高度和爬升惯性输出速度作为目标,以确保视觉估计不会偏离其惯性对惯性对等的偏差。 由此产生的IA-VNS(Interliformal Developmental SWAP(Siz, Weight, 和Power)的自动固定翼低惯性导航系统(SWAVA)导航系统(S)的高级导航系统(Sized,Wight,Wight,WI-VNS系统)的高级导航系统(SLA-VNS系统)的高级导航系统)的高度偏移位)的横向位置定位定位,是用于对前一级和高精度对飞行器的高级导航和高级导航的导航系统对高空空空空空空空压的导航结果的分析。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月17日
Arxiv
27+阅读 · 2023年1月5日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员