The study of stability and sensitivity of statistical methods or algorithms with respect to their data is an important problem in machine learning and statistics. The performance of the algorithm under resampling of the data is a fundamental way to measure its stability and is closely related to generalization or privacy of the algorithm. In this paper, we study the resampling sensitivity for the principal component analysis (PCA). Given an $ n \times p $ random matrix $ \mathbf{X} $, let $ \mathbf{X}^{[k]} $ be the matrix obtained from $ \mathbf{X} $ by resampling $ k $ randomly chosen entries of $ \mathbf{X} $. Let $ \mathbf{v} $ and $ \mathbf{v}^{[k]} $ denote the principal components of $ \mathbf{X} $ and $ \mathbf{X}^{[k]} $. In the proportional growth regime $ p/n \to \xi \in (0,1] $, we establish the sharp threshold for the sensitivity/stability transition of PCA. When $ k \gg n^{5/3} $, the principal components $ \mathbf{v} $ and $ \mathbf{v}^{[k]} $ are asymptotically orthogonal. On the other hand, when $ k \ll n^{5/3} $, the principal components $ \mathbf{v} $ and $ \mathbf{v}^{[k]} $ are asymptotically colinear. In words, we show that PCA is sensitive to the input data in the sense that resampling even a negligible portion of the input may completely change the output.


翻译:在机器学习和统计中,对统计方法或算法的稳定性和敏感性的研究是一个重要问题。在重现数据中,算法的性能是测量其稳定性的一个基本方法,并且与算法的一般化或隐私密切相关。在本文中,我们研究主要组成部分分析(PCA)的重新采样敏感性。考虑到$n\time p 随机矩阵$\mathbf{X}美元,让$\mathbf{X}{x{{{{k}美元成为从$mathbf{X}获得的矩阵。通过重现数据重现数据稳定性的一种基本方法。值为$\mathb{f{v}美元随机矩阵的重新采样敏感性。美元=mathb{x{x{x}美元(mock}美元),美元=mexf finef{x{x}美元(x_xx}美元。在比例增长制度中,美元/nexb{x}xxx_xxxxxx} 美元通过重选取的条目选择的条目。

0
下载
关闭预览

相关内容

在统计中,主成分分析(PCA)是一种通过最大化每个维度的方差来将较高维度空间中的数据投影到较低维度空间中的方法。给定二维,三维或更高维空间中的点集合,可以将“最佳拟合”线定义为最小化从点到线的平均平方距离的线。可以从垂直于第一条直线的方向类似地选择下一条最佳拟合线。重复此过程会产生一个正交的基础,其中数据的不同单个维度是不相关的。 这些基向量称为主成分。
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
68+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
19+阅读 · 2017年10月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月6日
Arxiv
0+阅读 · 2023年4月2日
VIP会员
相关VIP内容
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
68+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
19+阅读 · 2017年10月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员