The recent lottery ticket hypothesis proposes that there is one sub-network that matches the accuracy of the original network when trained in isolation. We show that instead each network contains several winning tickets, even if the initial weights are fixed. The resulting winning sub-networks are not instances of the same network under weight space symmetry, and show no overlap or correlation significantly larger than expected by chance. If randomness during training is decreased, overlaps higher than chance occur, even if the networks are trained on different tasks. We conclude that there is rather a distribution over capable sub-networks, as opposed to a single winning ticket.


翻译:最近的彩票假设提出,在单独培训时,有一个子网络与原始网络的准确性相匹配。 我们显示,尽管初始重量已经固定,但每个网络都包含几张中奖票。 结果,获胜的子网络并不是在重量空间对称下属于同一个网络,没有出现比偶然预期大得多的重叠或相关关系。 如果培训中的随机性减少,即使网络接受不同任务的培训,重叠也比偶然性高。 我们的结论是,对有能力的子网络进行分配,而不是单张中奖票。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
简明扼要!Python教程手册,206页pdf
专知会员服务
47+阅读 · 2020年3月24日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
Generalization and Regularization in DQN
Arxiv
6+阅读 · 2019年1月30日
Learning to Importance Sample in Primary Sample Space
Arxiv
11+阅读 · 2018年7月31日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
Generalization and Regularization in DQN
Arxiv
6+阅读 · 2019年1月30日
Learning to Importance Sample in Primary Sample Space
Arxiv
11+阅读 · 2018年7月31日
Arxiv
3+阅读 · 2018年2月24日
Top
微信扫码咨询专知VIP会员