Recent work has focused on the potential and pitfalls of causal identification in observational studies with multiple simultaneous treatments. On the one hand, a latent variable model fit to the observed treatments can identify essential aspects of the distribution of unobserved confounders. On the other hand, it has been shown that even when the latent confounder distribution is known exactly, causal effects are still not point identifiable. Thus, the practical benefits of latent variable modeling in multi-treatment settings remain unclear. We clarify these issues with a sensitivity analysis method that can be used to characterize the range of causal effects that are compatible with the observed data. Our method is based on a copula factorization of the joint distribution of outcomes, treatments, and confounders, and can be layered on top of arbitrary observed data models. We propose a practical implementation of this approach making use of the Gaussian copula, and establish conditions under which causal effects can be bounded. We also describe approaches for reasoning about effects, including calibrating sensitivity parameters, quantifying robustness of effect estimates, and selecting models which are most consistent with prior hypotheses.


翻译:一方面,与所观察的治疗方法相适应的潜在变量模型可以确定未观察到的混淆分子分布的基本方面;另一方面,已经表明,即使潜在混淆分子分布完全已知,但仍无法确定因果关系。因此,在多种处理环境中潜在变量建模的实际好处仍然不明确。我们用敏感度分析方法澄清这些问题,该方法可用来确定与所观察到的数据相容的因果关系范围。我们的方法基于结果、治疗和纠结者联合分布的混合因子化,可以在任意观察到的数据模型的顶部进行分层。我们建议实际实施这一方法,利用高斯断层,并确定因果关系的界限条件。我们还描述了对效果进行推理的方法,包括校准敏感度参数,量化效果估计的稳健性,以及选择最符合先前假设的模型。

1
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月12日
Benchmarking Simulation-Based Inference
Arxiv
0+阅读 · 2021年4月9日
Arxiv
0+阅读 · 2021年4月9日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员