The last few years have witnessed an increased interest in incorporating physics-informed inductive bias in deep learning frameworks. In particular, a growing volume of literature has been exploring ways to enforce energy conservation while using neural networks for learning dynamics from observed time-series data. In this work, we survey ten recently proposed energy-conserving neural network models, including HNN, LNN, DeLaN, SymODEN, CHNN, CLNN and their variants. We provide a compact derivation of the theory behind these models and explain their similarities and differences. Their performance are compared in 4 physical systems. We point out the possibility of leveraging some of these energy-conserving models to design energy-based controllers.
翻译:暂无翻译