An important issue for many economic experiments is how the experimenter can ensure sufficient power for rejecting one or more hypotheses. Here, we apply methods developed mainly within the area of clinical trials for testing multiple hypotheses simultaneously in adaptive, two-stage designs. Our main goal is to illustrate how this approach can be used to improve the power of economic experiments. Having briefly introduced the relevant theory, we perform a simulation study supported by the open source R package asd in order to evaluate the power of some different designs. The simulations show that the power to reject at least one hypothesis can be improved while still ensuring strong control of the overall Type I error probability, and without increasing the total sample size and thus the costs of the study. The derived designs are further illustrated by applying them to two different real-world data sets from experimental economics.


翻译:对于许多经济实验来说,一个重要问题是实验者如何确保足够的力量来拒绝一种或多种假设。在这里,我们应用主要在临床试验领域开发的方法,在适应性、两阶段设计中同时测试多种假设。我们的主要目标是说明如何利用这种方法来提高经济实验的力量。我们简要介绍了相关理论,进行了由开放源R软件包支持的模拟研究,以评价某些不同设计的力量。模拟表明,至少拒绝一种假设的力量可以改进,同时仍然确保严格控制总体类型I误差概率,同时不增加总样本规模,从而增加研究成本。通过将其应用于实验经济学中两种不同的真实世界数据集来进一步说明由此产生的设计。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【干货书】管理统计和数据科学原理,678页pdf
专知会员服务
185+阅读 · 2020年7月29日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
9+阅读 · 2017年10月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年10月4日
Arxiv
0+阅读 · 2021年10月1日
Arxiv
0+阅读 · 2021年10月1日
Imitation by Predicting Observations
Arxiv
4+阅读 · 2021年7月8日
VIP会员
相关VIP内容
专知会员服务
77+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【干货书】管理统计和数据科学原理,678页pdf
专知会员服务
185+阅读 · 2020年7月29日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
9+阅读 · 2017年10月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员