We design new policies that ensure both worst-case optimality for expected regret and light-tailed risk for regret distribution in the stochastic multi-armed bandit problem. Recently, arXiv:2109.13595 showed that information-theoretically optimized bandit algorithms as well as standard UCB policies suffer from some serious heavy-tailed risk. Inspired by their results, we further show that heavy-tailed risk actually exists for all "instance-dependent consistent" policies. In particular, any policy that incurs an instance-dependent $O(\ln T)$ expected regret must incur a linear regret with probability $\Omega(\text{poly}(1/T))$. With the aim to ensure safety against such heavy-tailed risk, starting from the two-armed bandit setting, we provide a simple policy design that (i) has the worst-case optimality for the expected regret at order $\tilde O(\sqrt{T})$ and (ii) has the worst-case tail probability of incurring a linear regret decay at an optimal exponential rate $\exp(-\Omega(\sqrt{T}))$. Next, we improve the policy design and analysis to the general $K$-armed bandit setting. Specifically, the worst-case probability of incurring a regret larger than $x$ is upper bounded by $\exp(-\Omega(x/\sqrt{KT}))$. We also enhance the policy design to accommodate the "any-time" setting where $T$ is not known a priori. A brief account of numerical experiments is conducted to illustrate the theoretical findings. We conclude by extending our proposed policy design to the general stochastic linear bandit setting and obtain light-tailed regret bound. Our results reveal insights on the incompatibility between consistency and light-tailed risk, whereas indicate that worst-case optimality on expected regret and light-tailed risk on regret distribution are compatible.


翻译:我们设计了新政策,确保最坏情况的最佳性,既符合预期的遗憾,也符合在多武装匪徒问题中进行遗憾分配的轻尾风险。最近,arxiv:2109.135995显示,信息-理论优化强盗算法和标准的UCB政策存在一些严重的重尾风险。根据它们的结果,我们进一步显示,所有“依赖内向性一致”政策实际上都存在最坏情况的最佳性。特别是,任何产生依赖内向性的美元(美元)预期的遗憾分配的政策,必须产生直线性遗憾。最近,arx:2109.13595显示,信息-理论优化强盗算法以及标准的UCBCS-Ilorth 政策,从两武装强的轮向下,我们提供了一个简单的政策设计(i)最坏情况的最佳最佳情况,我们一般内向O(sqrt{t}风险最坏情况。(i)美元)和(ii)在最短的内向内向内向内向内流的内向内向内流最坏情况最坏情况最坏情况最坏的情况。(i)政策,我们最坏的内向内向后,我们最坏的内向内向内向后,我们最坏的内向后最差的内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内流的内向内流的内向内向内向内流最坏的内向内流的内流的内向内向内向内向内向内向内向内向, 直的内向内向内向内向内向。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年12月21日
Optimal Individualized Decision-Making with Proxies
Arxiv
0+阅读 · 2022年12月21日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员