Fluidic locomotion of flapping Micro Aerial Vehicles (MAVs) can be very complex, particularly when the rules from insect flight dynamics (fast flapping dynamics and light wings) are not applicable. In these situations, widely used averaging techniques can fail quickly. The primary motivation is to find efficient models for complex forms of aerial locomotion where wings constitute a large part of body mass (i.e., dominant inertial effects) and deform in multiple directions (i.e., morphing wing). In these systems, high degrees of freedom yields complex inertial, Coriolis, and gravity terms. We use Algorithmic Differentiation (AD) and Bayesian filters computed with cubature rules conjointly to quickly estimate complex fluid-structure interactions. In general, Bayesian filters involve finding complex numerical integration (e.g., find posterior integrals). Using cubature rules to compute Gaussian-weighted integrals and AD, we show that the complex multi-degrees-of-freedom dynamics of morphing MAVs can be computed very efficiently and accurately. Therefore, our work facilitates closed-loop feedback control of these morphing MAVs.
翻译:摩擦微型航空飞行器(MAV)的摩擦液液流移动变异可能非常复杂,特别是当昆虫飞行动态(快速拍动动态和光翼)的规则不适用时,尤其是当昆虫飞行动态(快速拍动动态和光翼)的规则不适用时,在这种情况下,广泛使用的平均技术会很快失败。主要动机是找到复杂的空中移动形式的有效模型,其中翅膀构成人体质量(即占支配地位的惯性效应)和多方向变形(即变形机翼)的很大部分。在这些系统中,高自由度会产生复杂的惯性、科里奥利斯和重力等条件。我们使用与烹调规则相配合的阿尔戈蒂特克差异(AD)和贝耶西亚过滤器来快速估计复杂的流体结构相互作用。一般而言,巴耶西亚过滤器需要找到复杂的数字整合(例如,找到后方的内涵)和多方向变形(例如,变形机翼)。在这些系统中,我们可以用复杂的多度自由度动态来计算变形的MAVAVs的反馈。因此,我们的工作可以非常高效和准确地进行封闭式的调整。