Data assimilation algorithms combine information from observations and prior model information to obtain the most likely state of a dynamical system. The linearised weak-constraint four-dimensional variational assimilation problem can be reformulated as a saddle point problem, which admits more scope for preconditioners than the primal form. In this paper we design new terms which can be used within existing preconditioners, such as block diagonal and constraint-type preconditioners. Our novel preconditioning approaches: (i) incorporate model information whilst guaranteeing parallelism, and (ii) are designed to target correlated observation error covariance matrices. To our knowledge (i) has not previously been considered for data assimilation problems. We develop new theory demonstrating the effectiveness of the new preconditioners within Krylov subspace methods. Linear and non-linear numerical experiments reveal that our new approach leads to faster convergence than existing state-of-the-art preconditioners for a broader range of problems than indicated by the theory alone. We present a range of numerical experiments performed in serial, with further improvements expected if the highly parallelisable nature of the preconditioners is exploited.


翻译:数据同化算法结合观测和先验模型信息以获取动态系统的最可能状态。将线性化的弱约束四维变分同化问题重构为鞍点问题,该问题较原始形式具有更多的预处理器选择。在本文中,我们设计了可用于现有预处理器中的新术语,例如块对角线和约束型预处理器。我们的新预处理方法:(i)在保证并行性的同时,结合了模型信息;(ii)旨在瞄准相关观测误差协方差矩阵。据我们所知,(i)在数据同化问题中以前未被考虑。我们开发了新的理论,证明了在 Krylov 子空间方法中使用新预处理器的有效性。线性和非线性数值实验表明,我们的新方法比现有的最先进预处理器在更广泛的问题范围内实现了更快的收敛速度,这比理论单独所示的要好得多。我们进行了一系列串行数值实验,如果利用预处理器的高度可并行化特性,则可以进一步改进。

0
下载
关闭预览

相关内容

专知会员服务
12+阅读 · 2021年10月12日
专知会员服务
50+阅读 · 2020年12月14日
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
40+阅读 · 2020年7月23日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月29日
VIP会员
相关VIP内容
专知会员服务
12+阅读 · 2021年10月12日
专知会员服务
50+阅读 · 2020年12月14日
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
40+阅读 · 2020年7月23日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员