Diffusion models have emerged as a powerful new family of deep generative models with record-breaking performance in many applications, including image synthesis, video generation, and molecule design. In this survey, we provide an overview of the rapidly expanding body of work on diffusion models, categorizing the research into three key areas: efficient sampling, improved likelihood estimation, and handling data with special structures. We also discuss the potential for combining diffusion models with other generative models for enhanced results. We further review the wide-ranging applications of diffusion models in fields spanning from computer vision, natural language processing, temporal data modeling, to interdisciplinary applications in other scientific disciplines. This survey aims to provide a contextualized, in-depth look at the state of diffusion models, identifying the key areas of focus and pointing to potential areas for further exploration. Github: https://github.com/YangLing0818/Diffusion-Models-Papers-Survey-Taxonomy.
翻译:传播模型已经成为一个强大的新大家庭,由许多应用领域,包括图像合成、视频生成和分子设计,具有破纪录的性能的深层基因模型组成,在这一调查中,我们概述了迅速扩大的传播模型工作,将研究分为三个关键领域:高效取样、提高可能性估计和以特殊结构处理数据;我们还讨论了将传播模型与其他增强成果的发源模型相结合的可能性;我们进一步审查了传播模型在计算机视觉、自然语言处理、时间数据模型等不同应用领域,以及其他科学学科跨学科应用的广泛应用,目的是提供一种背景化、深入的推广模型状况概览,确定重点关键领域,并指明进一步探索的可能领域;Github:https://github.com/YangLing0818/Difuncion-Models-Papers-Suvey-Taxomy。