The demise of Moore's Law and Dennard Scaling has revived interest in specialized computer architectures and accelerators. Verification and testing of this hardware depend heavily upon cycle-accurate simulation of register-transfer-level (RTL) designs. The fastest software RTL simulators can simulate designs at 1--1000 kHz, i.e., more than three orders of magnitude slower than hardware. Improved simulators can increase designers' productivity by speeding design iterations and permitting more exhaustive exploration. One possibility is to exploit low-level parallelism, as RTL expresses considerable fine-grain concurrency. Unfortunately, state-of-the-art RTL simulators often perform best on a single core since modern processors cannot effectively exploit fine-grain parallelism. This work presents Manticore: a parallel computer designed to accelerate RTL simulation. Manticore uses a static bulk-synchronous parallel (BSP) execution model to eliminate fine-grain synchronization overhead. It relies entirely on a compiler to schedule resources and communication, which is feasible since RTL code contains few divergent execution paths. With static scheduling, communication and synchronization no longer incur runtime overhead, making fine-grain parallelism practical. Moreover, static scheduling dramatically simplifies processor implementation, significantly increasing the number of cores that fit on a chip. Our 225-core FPGA implementation running at 475 MHz outperforms a state-of-the-art RTL simulator running on desktop and server computers in 8 out of 9 benchmarks.


翻译:Moore 法律和 Dennard 缩略语的消亡重新唤醒了人们对专门计算机架构和加速器的兴趣。 该硬件的核查和测试主要取决于对注册转移级别(RTL)设计进行周期精确模拟。 最快的软件 RTL 模拟器可以模拟1--1000 kHz的设计, 即比硬件慢了三个以上的数量级。 改进的模拟器可以通过加速设计迭代和允许更彻底的探索来提高设计师的生产率。 一个可能性是利用低水平的平行, 因为RTL 表示相当的精细的调调调和货币。 不幸的是, 最先进的RTL 模拟器往往在单一的核心上表现得最好, 因为现代处理器无法有效地利用微重重力平行的模拟器。 这项工作展示了Manticore:一个平行的计算机,用来加速RTL 模拟的模拟器。 改进的模拟器使用一个固定的散态同步执行模型来消除精细的同步式计算机管理。 它完全依靠一个编辑器来安排资源和通讯,这是相当精细的精细的调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调的调的调的调的调的调的调的调调, 调调调调调调调调调调调调调调调调调调调调调调调调调调的调的调的调的调的调的调,, 调制的调制的调制的调制的调制的调制的调制的调制的调制的调制的调制的调制的调制的调制的调制的调制的调制的调制的调制的调制的调制的调调调制的调调制的调调制的调制的调制的调制的调制的调制</s>

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员