Machine learning decision systems are getting omnipresent in our lives. From dating apps to rating loan seekers, algorithms affect both our well-being and future. Typically, however, these systems are not infallible. Moreover, complex predictive models are really eager to learn social biases present in historical data that can lead to increasing discrimination. If we want to create models responsibly then we need tools for in-depth validation of models also from the perspective of potential discrimination. This article introduces an R package fairmodels that helps to validate fairness and eliminate bias in classification models in an easy and flexible fashion. The fairmodels package offers a model-agnostic approach to bias detection, visualization and mitigation. The implemented set of functions and fairness metrics enables model fairness validation from different perspectives. The package includes a series of methods for bias mitigation that aim to diminish the discrimination in the model. The package is designed not only to examine a single model, but also to facilitate comparisons between multiple models.


翻译:机器学习决策系统正在我们生活中变得无处不在。 从约会应用程序到贷款寻求者评级,算法会影响我们的福祉和未来。 但是,通常,这些系统不会错失。 此外,复杂的预测模型非常渴望了解历史数据中存在的社会偏见,可能导致歧视增加。如果我们想要负责任地创建模型,那么我们需要从潜在歧视的角度来深入验证模型的工具。这篇文章引入了一个R包集集集集样板,帮助以简单灵活的方式验证公平,消除分类模型中的偏差。“公平模型”集提供了一种识别、可视化和缓解偏见的模型和不可知性方法。执行的功能和公平度指标集能够从不同角度验证模型的公平性。包包包括一系列旨在减少模型中歧视的减少偏差的方法。包不仅设计了单一模型,而且还便利了多种模型之间的比较。

0
下载
关闭预览

相关内容

【PKDD2020教程】可解释人工智能XAI:算法到应用,200页ppt
专知会员服务
101+阅读 · 2020年10月13日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
【ECCV2018】24篇论文代码实现
专知
17+阅读 · 2018年9月10日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2021年5月26日
Arxiv
5+阅读 · 2017年7月23日
VIP会员
相关资讯
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
【ECCV2018】24篇论文代码实现
专知
17+阅读 · 2018年9月10日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员