Model-free off-policy actor-critic methods are an efficient solution to complex continuous control tasks. However, these algorithms rely on a number of design tricks and hyperparameters, making their application to new domains difficult and computationally expensive. This paper creates an evolutionary approach that automatically tunes these design decisions and eliminates the RL-specific hyperparameters from the Soft Actor-Critic algorithm. Our design is sample efficient and provides practical advantages over baseline approaches, including improved exploration, generalization over multiple control frequencies, and a robust ensemble of high-performance policies. Empirically, we show that our agent outperforms well-tuned hyperparameter settings in popular benchmarks from the DeepMind Control Suite. We then apply it to less common control tasks outside of simulated robotics to find high-performance solutions with minimal compute and research effort.


翻译:无模型的不受政策限制的行为者-批评方法是复杂连续控制任务的有效解决办法。 但是,这些算法依赖许多设计技巧和超参数,使得其应用于新的领域变得困难和计算成本昂贵。本文创建了一种渐进式方法,自动调整这些设计决定,从Soft Acoror-Critic 算法中删除了针对RL的超参数。我们的设计是抽样式的,为基线方法提供了实际优势,包括改进探索、对多个控制频率的普及化和一套强有力的高性能政策。我们经常地表明,我们的代理器在深海控制套件的流行基准中,优度的超光谱仪设置已经超越了。然后,我们将其应用到模拟机器人以外的较不常见的控制任务中,以最小的计算和研究努力来找到高性能的解决方案。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
22+阅读 · 2021年4月10日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最前沿:深度解读Soft Actor-Critic 算法
极市平台
54+阅读 · 2019年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月21日
Arxiv
22+阅读 · 2021年12月19日
Arxiv
4+阅读 · 2021年10月19日
Arxiv
7+阅读 · 2018年12月26日
VIP会员
相关VIP内容
专知会员服务
22+阅读 · 2021年4月10日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
最前沿:深度解读Soft Actor-Critic 算法
极市平台
54+阅读 · 2019年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员